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I. IITIRODUCTION 

.Thin shells of revolution a r e  widely used i n  f l i g h t  s t ructures  and 

the i r  analysis i s  of great  importance t0 the design engineer. In such 

shells f o r  symmetrical loadings and small displacements, the membrane 

s t resses  and the corresponding e l a s t i c  displacements can be readi ly  

computed. However, due t o  the variations i n  thickness, r ing-like 

reinforcements a t  openings and junctures with the adjoining shells and/or 

structures,  very important bending stresses develop. The analysis of such 

s t resses  may be very complex. I n  fact ,  solutions are available only f o r  

the  few simplest possible shapes of the  meridian. A l s o  very few solutions 

e x i s t  f o r  t h e  cases of variable thickness and i n  sane of the solutions 

which a r e  available, the thickness variation is  prescribed f o r  reasons of 

mathematical expediency. On t h e  other hand, functional and manufacturing 

requirements often demand a r b i t r a r y  shape and thickness var ia t ion of the 

s h e l l  of revolution. To achieve a prac t ica l  solution f o r  such a general 

problem i s  the primary purpose of t h i s  investigation. 

/ 

This f irst  report  of t h e  general investigation confines i t s  

a t ten t ion  t o  the e l a s t i c  analysis  of a rb i t ra ry  shells of revolution 

assuming small deformations. A general solution of t h i s  problem has been 

obtained by employing f i n i t e  elements into which any s h e l l  of revolution 

may be subdivided. The basic finite elenaent i s  a truncated conical shel l .  

Presentation of the detai led analysis of element f l e x i b i l i t y ,  j o i n t  loads, 

matrix solution of the problem, and examples solved with the a id  of an 

II34 7090 computer form the basis of t h i s  report. The developed proce- 

dures a r e  qui te  general and can be applied t o  any symmetrically load-eC 
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shell of revolution. This includes possible variations in shell thickness 

as well as boundary conditions. 
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11. REVIEW OF MATHEMATICAL FORMULATIONS 

A search of l i t e r a t u r e  shows t h a t  the general problem of axi-  

symmetrically loaded she l l s  of revolution has not been completely solved 

f o r  the case of a r b i t r a r y  shape and thickness, non-elastic material and 

large deformations. However, governing d i f f e ren t i a l  equations have been 

formulated and solutions are avai lable  f o r  cer ta in  spec ia l  cases w i t h  

e l a s t i c  materials. These w i l l  be sMrmarized below. 

H. Reissner and Meissner f i rs t  formulated the  governing equations 

of she l l s  of revolution based on the  c l a s s i ca l  theory of e l a s t i c i t y  

which can be easily found i n  F l i ige ' s  book on she l l s  (1) . 
I r r r r 

1 r 

r2r2Qg r 
cot2# + v - v g cot  $3r= K 

2 r 
- [A cot2# - v - v 7 ) = -D(l-v )rlx + Pg(#) 

r2 

m 
1 - v  

D = -  2 
Eh3 

u ( 1 - v  ) 2 '  where K = 

Timoshenko i n  h i s  book gives a l so  the same re la t ions  using somewhat 

(2)  d i f fe ren t  notations . 
The general procedure of solving Equations (A)  consists of eliminating 
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one or  t h e  other of the dependent variables and forming an uncoupled fourth 

order d i f f e r e n t i a l  equation. 

i n t o  two second order d i f f e r e n t i a l  equations which are then solved. 

Alternatively, an  asymptotic o r  numerical procedures are used t o  obtain 

Such an equation i s  then s p l i t ,  if possible, 

a solution. 

For t h i n  spher ica l  she l l s  of constant thickness, the  Reissner- 

Meissner equations ( A )  can be solved exactly by the  use of hypergeometric 

and Zagustin and Young solut ion(3)  using asymptotic integra-  

t i o n  gives good results far a l l  regions of the she l l .  

For variable thickness, s p l i t t i n g  the  two fourth order d i f f e r e n t i a l  

equations in to  second order equations can be achieved under cer ta in  

conditions''). But asymptotic methods are necessary i n  general. Rygol (4) 

solved the  resu l t ing  asymptotic d i f f e r e n t i a l  equation i n  the  form 

0 by approximating the  thickness function X rrith t-tro 4 + 4x Qb = 

constants. The solution i s  exact f o r  ce r t a in  var ia t ion  of thickness. 

Kovalenbo(') solved the  problem of conical she l l s  of l i n e a r l y  variable 

thickness when the thickness increases toward the  apex. 

When the  deformations increase, the  problem becomes more complicated. 

E. Reissner ( 6 ) ( 7 )  formulated the governing equations f o r  the case of small 

deformation but a r b i t r a r y  ro ta t ion  as follows. 

a + v f :  + E r [cos (g + - cos $j 

1 s i n  ($  + 0)  - rv cos (@ + B )  - r D  
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By expanding i n  s e r i e s  

S2 cos ($ + p) = cos $ - p s i n  # - - cos $ ..... 
2: 

s i n  (@ + e) = s i n  # + cos - 82 s i n  # ..... 
2: 

and retaining only powers up to, or i n  cer ta in  expressions, lower than 

6' he obtained the "small f i n i t e  deflection theory". 

equations become 

The governing 
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6 I 

For the  general  case, a solution of these equations i s  very d i f f i -  

cu l t .  But f o r  spec ia l  cases (cylinders, spheres) with constant thickness, 

asymptotic solutions are possible. 

If only the  l i nea r  te rns  a r e  retained, the above equations fu r the r  

simplify in to  those corresponding t o  the  "small deformation theory", 

d i f fe ren t  form from tha t  given by (21). 

form: 

The equations t a k e  the folloraing 

r D  a )  'D a )  Z '  r '  
+ & - [($12- v r D  a p = r D  a - 0 ( rv)  

The solution p o s s i b i l i t y  of t h i s  set  has been discussed before. 

Naghdi and D e  S i l ~ a ( ~ ) ( ~ ) ( ~ ~ )  did some vork i n  de t a i l  on 

E. Reissner's equation. Their solution process made use of c a q l e x  

auxiliary functions and Langer's method of asymptotic integration . 
Further cmpl ica t ion  arises when the  e f f e c t  of tr-ansverse shear 

(11) 

deformation i s  considered. Following E. Reissner's formulation f o r  

small deformations Naghdi (u)(13) included transverse shear deformation 

and derived the  following equations f o r  general 

revolution. 

6 
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h2 
l2( 1-v2 1 k =  

If we set h and yg. = 0 
, the equations reduce t o  (B-b). 

The solution procedure f o r  these equations is  much the sane as t h a t  

used earlier by Naghdi f o r  the case without transverse shear effect .  

For large deformations and non-linear material, solution can be 

(17) found only f o r  membrane theory w i t h  isotropic incompressible mater ia l  . 
Since t h e  available mathematical solutions a r e  extremely complex 

and since it is  a b o s t  impossible t o  incorporate i n t o  these solutions 
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the general p rac t ica l  range of she l l s  w i t h  regard t o  shape, thiclmess, 

material, and magnitude of deformations, an approximate, stepwise, pseudo- 

e las t ic  f i n i t e  element solution has been formulated. In a general 

problem, the ac tua l  s h e l l  of revolution is  considered t o  be an assemblage 

of a large number of s t m i g h t  cones each of uniform thickness w i t h  the 

exception of the top ( o r  bottom) element which i s  a shallow spherical  

cap of i t s  own uniform thickness. 

increments f o r  investigations of large deformations and/or inelas t i c  

behavior of material. For each s tep of loading the displacemnts of the 

nodal points and the forces i n  t h e  conical and spherical  elements can be 

calculated by standard matrix operations. The displacements of the nodal 

points define a new geometry of the  assemblage and  hence new geometry and 

s t ruc tura l  properties of each element. From the forces i n  t h e  elements 

the s t resses  and s t r a i n s  can be computed which determine whether or not 

a new s e t  of constants defining the mater ia l  properties should be assigned 

t o  each element for the next increment of load. In  t h i s  manner, the 

problems of large deformation and change of material  properties a f t e r  

yielding w i l l  be t rea ted  i n  subsequent reports. 

properties vary under b iax ia l  s t r e s s  conditions is  t h e  subject of a 

separate experimental investigation. 

the  load increments suf f ic ien t ly  small, the a c t u a l  case of smoothly 

varying shape and thickness as wel l  as gradual yielding of material  can 

be approximated. This report  i s  confined, however, only t o  the analysis 

of one load application, i.e., the reported solution i s  complete f o r  

axisymmetrical 

experiencing small displacements. 

Loads can be applied i n  small 

How the material  

By making the s i z e  of elements and 

loading of an arbitrary e l a s t i c  s h e l l  of revolution 
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111. THEORY OF FINI'IE ELEMEXT SOLUTION 

A. General Procedure. 

The basic principles and procedures employed i n  the applications 

of t2E f i n i t e  element method i n  s t ruc tura l  analysis f o r  the case of 

small deformations and e l a s t i c  mater ia l  have become well  known i n  

recent years and a r e  described i n  several publications (18) ( 19 1 (20). 

The basic s teps  consist  of:  

(1) Establishing the s t i f fnes s  of the s t ructure  from the 

s t i f fnes s  (or  f l e x i b i l i t y )  of the individual elements, 

(2) Calculation of the forces on,c;. the displacements of, the 

jo in ts  of the structure, and 

(3) Calculation of the forces and deformations of the elements. 

I n  Step (l), some matrices defining the  geometrical re la t ions between 

t h e  s t ructure  and the elements a re  used. 

In the ordinary s t ruc tu ra l  problems the element f l e x i b i l i t i e s  

a r e  symmetrical with respect t o  the main diagonal and only three 

quant i t ies  a re  required t o  solve the problem completely. These 

quant i t ies  are:  

(1) Element s t i f fnes s  matrix which includes the s t i f fnes s  

of a l l  elements i n  a diagonal arrangement, 

(2) Loads or  displacements imposed on the jo in t s  of the 
structure, and 

(3) m e  displacement transformation matrix. 

However, i n  the problem considered here, element forces per uni t  length 

a re  involved and hence unsymmetrical f l e x i b i l i t y  or  s t i f fnes s  matrices i s  

obtained. Therefore, another geometrical matrix which w i l l  be cal led 

9 



the  "equilibrium matrix" is required i n  addition t o  the displacement 

transformation matrix. Each of these quantit ies will be discussed i n  

d e t a i l  i n  subsequent sections. 
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B. Zlement Flexibilities 

1. Conical Segment. The displacements of the edges of a conical 

ring due to forces (including moments) applied on the edges can be obtained 

from mathematical solutions for conical shells. The expressions derived 

by FlCgge") will be used as the basis of our formulation. 

F1"ugge's bending solution of conical shell yields the following 

relations. 

Qs = s 1 [Al(ber y - 2y -1 bei'y) + %(bei y + 2y-I ber'y) 

+ Bl(ker y - 2y -1 kei'y) + B2(kei y + 2y-l ker'y) 

N = -Qs Cot a! 
S 

cot a 
2s Ne = - - [AL (y ber'y - 2 ber y + by-1 bei'y) 

+ (y bei'y - 2 bei y - 4y-' ber'y) 

+ %(y ker'y - 2 ker y + 4y-l kei'y) 
+ B2 (y kei'y - 2 kei y - ky -1 ker'y)] 

I MS = 2y-2 [ A1 [y bei'y - 2(1 - v)(bei y + 2y-I ber'y) 

- p'2 [y ber'y - 2(1 - v)(ber y - 2y-l bei'y)] 

J -1 + B1 ly kei'y - 2(1 - v)(kei y + 2y ker'y) 

11 - B2 [y ker'y - 2(1 - v)(ker Y - 2Y-I kei'Y) 

1 + ~1 [vy kei'y + 2(1 - v)(kei Y + 5-1 ker'y) 

- B2 [vy ker'y + 2(1 - v)(ker y - 2y-I kei'y)]} 
11 



- A2 (ber y - 2y -1 bei 'y)  + B1 (ke i  y + 2y -1 ker 'y )  

- B2 (ker y - 2y-I kei 'y)]  

F l k g e  did not give expressions f o r  v and w . But these can 

be derived from the s t r e s s - s t r a in  and strain-displacement re la t ions 

and 
dv 

9 Es = - V w t a n a  . 
e -  S + s  ds € - -  

* 

N i  I 
N i  

ELEMENT FORCES 

0 

ELEMENT DEFORMATIONS 

FIG. I - CONICAL ELEMENT 

12 

Q 

t THICKNESS 

Y POISSON RATIO 

E = CLASTIC MODULUS 

- 3  
'i 

r =  

S = DISTANCE FROM 
APEX 0 



Using the  expressions f o r  Ne and Ns from (I-a) ,  eliminating 

and integrat ing (11), we obtain 

+ B2 [' P kei y + (1 + v1y-l ker'y]] 

2 
cot { A1 [ber y - 3 y ber'y bei y - 3 Y bei'Y w = -  E t  

+ B~ [Ber y - 3 y ker'y] + B2 [kei y - 4 y kei'Y 

In  the  first of (I-b) in tegra ls  of Thompson functions have been removed 

by using the  following i d e n t i t i e s  

y bei y dy = -y ber 'y  i y  J,". ber y dy = y be i 'y  , 
' 0  

Y 
lOyy ker y dy = y ke i 'y  , y kei y dy = -y ker 'y  

The pos i t ive  directions of the forces and displacements i n  a conical 

element a r e  shown i n  Fig. 1. 

It should be noted t h a t  Fli.i.ge's bending solut ion of conical s h e l l  

w a s  obtained from a system i n  which only horizontal  force a c t s  rad ia l ly  

a t  the  periphery, the v e r t i c a l  force on the r ing is  zero. 

noted from Fl&e's comment on t h e  governing d i f f e r e n t i a l  equation i n  

This can be 

R e f .  (l), and i s  re f lec ted  by t h e  expressions of Qs and Ns from 

(I-a), which imply t h a t  there is only one force H applied such t h a t  

Qs = -H s i n  a , Ns a H COS C11 



The expressions N and N given by (I-a) a r e  the resul t ing membrane 

forces i n  t h e  s h e l l  due t o  the application of bending moments and 

horizontal forces a t  the edges. If a force Ns i s  applied a t  the edge 

of the ring as a source of disturbance, the induced forces and deforma- 

t ions in the s h e l l  cannot be obtained from (I-a)  and (I-b)  and should be 

computed from t h e  expressions resul t ing from a membrane type analysis. 

Fl*&ge also gives the solution t o  the problem of membrane 

S e 

deformation of conical shells''). The resul t ing expressions f o r  t h e  

case where no dis t r ibuted loads are applied to the s h e l l  surface are 

C 
E t  v = - log s + c1 

C 
E t  w = - - cot a ( log  8 + v )  - c1 cot  a 

1 cot  a - 3 1 =  - E t  S 

where C and C1 a r e  constants of integrations t o  be determined 

from a force condition and a displacement condition respectively on 

the boundary. 

S = N i . S  - 
i -  For the case of zero dis t r ibuted loads, C = Nso 

S 

It m u s t  be pointed out t h a t  f o r  equilibrium i n  the v e r t i c a l  

direction a force $ applied a t  edge j has t o  be balanced by a 

force N applied a t  edge i . The bending moment o r  horizontal  

force applied individually a t  e i t h e r  edge i s  self-equilibrating. 

i 
S 

Membrane deformations can only be computed w i t h  respect t o  some 

reference posit ion which i s  governed by the  constant C1 . 
To avoid the coupling of bending and membrane actions and f o r  the 

reason mentioned i n  t h e  previous paragraph, we choose 

a t  both edges and Ns 

14 
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force quantit ies,  and a r b i t r a r i l y  assume t h a t  t h e  ring is held s ta t ionary 

a t  t h e  upper edge during s t re tch,  i.e. v = 0, under the act ion of 

membrane force Ns . 
i 

Four boundary conditions define the four constants A1 , A2 , B1 , 
B2 of Eq. ( I -a) .  These are 

Upon subst i tut ing the  expressions of A1, A2 , B1 
now functions of M M Hi , Hj in to  Eqs. ( I - a )  and ( I -b)  w e  

obtain t h e  force and deformation quantit ies as functions of Mi , M 

Hi , H 

algebraic manipulation is  lengthy and tedious. Only t h e  resul t ing 

B2 , which a r e  

i ’  3 ’  

j y  

and of Thompson functions and t h e i r  f i r s t  derivatives. The J 

expressions i n  symbolic form w i l l  be given below. 

Before w e  present t he  resu l t ing  force and deformation expressions, 

w e  need t o  define a f e w  more quant i t ies .  

To correspond with the horizontal  force H, there m u s t  be a 

horizontal  displacement 6 From simple geometry 

6 = w s i n  a + v cos a (4)  

We see tha t  the posi t ive d i rec t ion  of 6 is  outward. 

We then f ind  t h a t  the deformations xi , ’Jj , si , 6j as defined 

by F r i g e ‘ s  solut ion are not all i n  t h e  same di rec t ion  as the  correspond- 

Mi , Mj , Hi , Hj . Also since the membrane force N and 
j 

ing forces 

e x i s t  simultaneously w e  must define the  corresponding deformation Ni 
i n  the  same sense. 

as Ni and N .  where Ni = r N .) Thus, w e  introduce the  following 

as t he  basic element deformation quantit ies corresponding t o  the basic 

(From now on we abbreviate t h e  symbol 4 and 4 
- 

J J 



element force quantit ies we have chosen. 



i 

~ 

I , 
! 

I 

i 

~ 

I 

, 

f 

2 
%3 a23 = s i n  a.8 - - j a ' &24 = 

y i  d22 -- - $1 

31 Y i  

sin a's - a21 = i A  ' a22 = 2 A 

33 d 2 

j > b l 4 = -  
d 

bll = -sin wsiT ; bQ = - - - b - -s in  a's - * 
2 

2 A  ' 13 - 

43 d d41 Y i  '4.2 b22 = a ; b23 = s i n a - s  - j A ' %24 = b21 = s i n  a's - 



d =: minors of item ij in the determinant A .  
ji 

-1 bl(y) = ber y - 2y bei'y 

b2(y) = bei y + 2y-L bergy 
-I kl(y) = ker y - 2y kei'y 

-I k2(y) = kei y + 2y ker'y 

k4(y) P y kei'y - 'd1-v) k2(y) 

b5(y) = -3 [y ber'y - 2(1-bv) bl(Y)] 

b6(y) = -$- [y bei'y - 2( l+v )  b2(Y)] 

k5(y) = -3 [y ker'y - 2 ( l + v )  k1(y)] 

k&Y) = -2 [y kei'y - 2( l+v)  k2(y)] 

b9(y) = v ber y - 2(1+v) y -1 bei'y 

k9(y) = v ker y - 2(1+v) y -1 kei'y 

klO(y) = v kei y + 2( l+v)  y -1 ker'y 

blO(y) = v bei y + 2(1+v) y-l ber'y 



From ( I - c )  with C = N4s, and with the  condition t h a t  v, = 0, 
J J  

j 
we f ind  the  deformations due t o  a p a i r  of membrane force N 

applied a t  edges j and i . 
- 
r cot  a . - 

$i - E t  j 

With Eq. (111-a) and (111-b) we developed the relationship: 

............. f15 fll f= 

............. 
f25 

f 2 1  fa 

31 f 

f 4 1  
................... 55 f 5 1  f 

I 

j 
and ? N 

( 111-b) 

o r  i n  the matrix notation 

v = f * s  

f i s  the f l e x i b i l i t y  matrix of the conical element and has a dimension 

of 5x5. The inverse of f , called the stiffness matrix of the  element 

satisfies the re la t ion  
S = k v .  

Once the  edge forces Mi , Mj , Hi , Hj , and N a r e  known, the 

forces and deformations a t  any point  i n  the  conical r ing can be found 

from Eqs. (I-a) aid (I-b)  together w i t h  the  re la t ion  

19 



-? 

14 13 
a 

23 a24 a 

bll b12 13 b14 

b21 b22 23 b24 

a a 

a 

b 

b 

I 2  

22 

a 

a 
11 

2 1  

and from (I-c) supplemented by 

!Y!l log si - E t  c1 = 

-!XI 
Ns - S 

Ne = 0 

Referring back t o  the s h e l l  solutions from which Eq. (6)  was 

developed w e  see t h a t  force quantit ies a r e  a l l  i n  units of pounds o r  

pound-inches per uni t  length. Hence the f matrix so obtained i s  not 

symmetrical w i t h  respect t o  the main diagonal. 

representing deformations due t o  forces on the same edge of the ring 

a r e  symmetrical, while those representing e f fec ts  of forces across the  

edges are not. The l a t t e r  bear a r a t i o  of 7 t o  each other which 

ref lects  t h e  r a t i o  of the circumferences between the two edges of the 

ring. However, it can be e a s i l y  shown t h a t  items of f matrix do 

s a t i s f y  Betti's law.  We could use the t o t a l  forces around an edge as 

basic force quantit ies and obtain a symmetrical f matrix. But since 

a t  l a t e r  stages we  sha l l  make frequent use of the expressions from 

she l l  solutions which involve forces per uni t  length, we choose t o  

re ta in  i t s  present form. 

Items of the matrix 

The accuracy of the f matrix, judged from the values of the 

quantit ies on opposite sides of the  main diagonal, has been investigated 
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over a wide range of thickness, lengths, angles and radii of cones. It 

was found tha t  the  f irst  4x4 portion i s  nearly perfect  f o r  almost any 

case provided the length of the  elenext is oot sslsller than the  thickness, 

but the f i f t h  column and f if th row which depend on d i f fe ren t  mathematical 

functions diverge more andmore as the geometry of the cone approaches 

extreme cases. The first  4x4 s u b a t r i x ,  representing en t i r e ly  the  bend- 

ing effect ,  is valid as long as tan  a! is f i n i t e ,  but discrepancies between 

items on opposite s ides  of t he  diagonal increase as a approaches 90'; 

i n  such cases the expressions f o r  cyl indrical  she l l s  should be used. To 

reduce discrepancies between quant i t ies  of t h e  f i f t h  column and the f i f t h  

row, it i s  recommended tha t  f o r  a< 30' (since f o r  s m a l l  01 p la t e  act ion 

predominates) quant i t ies  of the  f i f t h  row be used t o  es tabl ish those of 

the f i f t h  column (by multiplying with appropriate fac tors ) ,  while f o r  

CZ>60° quant i t ies  of the f i f t h  colufnn be used to es tab l i sh  those of the 

f i f t h  row. 

For conical rings with la rger  periphery on top, (r i s  greater  than 

90' and cos a is  negative. 

distance as 

use the  same expression t o  obtain the f l e x i b i l i t y  matrix of the element, 

In this case, we s h a l l  t ake  the Larger s l a n t  

si , t h e  smaller slant distance as (T< I), and w e  can 

provided a change of s ign i s  applied t o  the values thus obtained f o r  a l l  

the t h i r d  and fourth column quant i t ies  (f 

t o  the  last three of the f i f t h  column quantit ies (f 

This f l e x i b i l i t y  matrix after inversion w i l l  represent the s t i f fnes s  of 

i = 1 t o  5, j = 3,k) and 13 ' 
35 ' f45 , f55)' 

the conical r ing .  
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2. Cylindrical Segment. For the cyl indrical  ring, the e f fec ts  

of the bending forces and the membrane force a l s o  should be t rea ted  

separately. Both the bending solution and membrane solution f o r  axi-  

symmetrical cylinders are available i n  Ref. (1) and (2). Using the nota- 

t ions and sign convention by Flkge") (Fig. 2), we established, after a 

considerable amount of manipulation, t h e  required relationships. 

With a force N lbs. per inch applied a t  one eild of a cylinder, there 

m u s t  be an equal force N a t  the other end. The deformations due t o  

membrane force N a r e  

v N a  
E t  

w = - -  
N( X j  - xi) 

e = u - u  - 
j i -  E t  

0 dw 
d x -  
- -  

Y N 

FIG. 2 - FORCES AND DEFORMATIONS IN  

A CYLINDRICAL ELEMENT 
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"lie bending solution of axi symmetrical cylindrical  sections ylelds 

I 

C1 , C2 , C3 , C4 , and C a r e  constants of integration. 

can be determined by defining two 

The 

constants 

force quant i t ies  a t  each end of the ring, and the constant 

w i l l  drop out when only the  expression of e = u - u is  wanted. 

C1 , C2 , C3 , C4 

C 

j i  

To conform to  the par t icu lar  force and deformation system 

adopted as standard fo r  our process (see Fig. 1 and Eqs. (5)  ), we 

apply the  four  conditions 
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a t  6 = t i  = 0 % = -Hi 

- 4  Mx = M t j  - a a t  6 = 

To obtain expressions of C1, C2, C3y C4 i n  terns of Mi, Mj, Hi' H . J 
&?on subst i tut ion of these expressions i n t o  (IV-b), there r e s u l t  

(reference t o  Eq. (5) ) : 

32- '42 j 
%i = K a { (Cu- Gel- C31- C 41 ) O M  i + (Cu- C22- C 

+ (C13- C23- C33- C43)*'4 + (C14- C24- C34- C44)*Hj} 

-w zJ = a ([-e-w(cos w + s i n  w )  c u + e (cos w - s i n  w >  c21 

j Mi 
w w + e (cosw - s i n  w )  c 

+ [-e-w(cos w + s i n  w )  cL2 + e-"(cos w - s i n  w )  c22 

+ e (cos w + s i n  w )  c~~ 31 

w W + e (cos w - s in  w )  C + e (cos u + s i n  w )  C 32 42 

23 + [-e4(cos w + s i n  w )  c + e-W(cos w - s i n  w )  c 

+ e (cos w - s i n  w )  C + e (cos w + s i n  w )  C ] Hi 

13 
w W 

33 43 
r 

-w + [-e-w(cos w + s i n  w )  c14 + e (cos w - s i n  w )  c24 
-7 . 

w + e (cos w - s i n  w )  c + ew(cos w + sin w )  c 34 
- 

= (-C -C )*Mi  + (-C -C )'M + (-C13-C33)*Hi + (-Clk-C34)"Hj 'i 11 31 2 32 J 

w W - 
€5 - (emwcos w*Cll +~Wsinw~C21 + e cos w*C 

+ e 

+ e s i n  W'C~~)*M~ 
j -  31 

-w 4 W u + ( e  cos w*C s i n  w*C22 + e cos w-C + e s i n  0*C42)'Mj 

+ (e-wcos U*C + e-"sin w*c + e cos w*c + eWsin W*C )*H~ 

+ (e  + e s i n  0*C44)'Xj 

12 32 

13 23 33 43 

24 34 

W 

-w W w cos w'C14 + e-wsin w*C + e cos w=C 
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where w I K e , Cll . e . . . . o  C43 C4& satisfy the relatioris 

A 

2w 
DU = cos 2 w - s i n  2 w - e 

-w w - (cos w + s i n  w)(ec" - e - 2 s i n  w e  D21 = 
D = e2w - 1 - s i n  a 

w 
31. .. 

w -0 
D41 = ccs u (e - e ) - 2 s i n  G 0 e  
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2 2 2bl D= t (cos w - s i n  w )  + 2 s i n  w - e 

D~~ = 

D - 2 s i n  w 

D42 = -s in  w ( e  - e-") 

w w -cos w ( e  - e-") - s i n  w ( e  + e-") 

2 
32 - 

W 

-20 D - -e + s i n  2 w  + cos 2 w  

D =: (cos w - s i n  .>(e - e-w) + 2 s i n  w 0 e 

D - 1 - e  - s i n  2w 

D - c o s w ( e  - e  ) - 2 s i n w -  e 

13 - 

23 

33 - 
43 - 

w -a 

-2w 

w -w -W 

-2w 2 D14 = e - 2 s i n  w - s i n  2w - 1 

D24 = 

D - 2 s i n  w 

D44 = -sin w ( e  - e-w) 

W w -cos w ( e  - e-") - s i n  w(e + e-") 

2 
34 - 

w 

Equations (N-a) yield 

From Eqs. (10) and (ll), the f l e x i b i l i t y  matrix of a cyl indrical  

ring can be obtained such t h a t  
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I = [fj. 

Mi 

Hi 

M 
j 

J H 

N 

I 
I of the cylindrical r ing  is obtained by inversion of the f matrix. 

are knownto be zeros. The stiffness 15 ’ f25 ’ f51 ’ f52 in which f 
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3. Spherical Cap. Fl*&ge and Timoshenko both present the 

asymptotic solution f o r  bending afa shallow spherical  s h e l l  i n  t h e i r  

books (1)(2). 

the notations shown i n  Fig. 3. 

The resul t ing general expressions a re  given below w i t h  

6 w = C ber x + C2 bei  x + C ke i  x - C4 ker x + C 1 3 

v = - e_ (1 + v )  { C1 bei'x - C2 ber'x - C ker'x 
a 3 

- C4 kei 'x - c5 
+ c6 (l+v) 

( C  ber'x + C2 bei 'x + C kei 'x  - C4 ker'x) 1 
3 c =  2 1 3 

Mr = > [Cl[-bei x - - 1 (l-v)berlx] + Cg[ber x - - 1 (1-v)bei'x 

] - C4 [-kei x - - 1 (1-v)ker'x 

X X 

X 

1 
X 

C1 a bei 'x  + C4 - kei 'x E t  1 Nr = - a [Cp.  ; ber'x - 
- 

I + C -.ker'x + C 3 x  

Ne = - Et a [C2 ( -bei  x - 1 X ber'x) - C1 (ber  x - a bei 'x)  

+ C4 (ker x - kei 'x)  + C (-kei x - $ ker 'x) - 31 
3 2 

r 

1 = 1 - C  bei 'x + C2 ber'x + C ker'x + C4 kei 'x  e3 1 3 

From t h e  above f o r  shallow shel ls ,  the horizontal  and v e r t i c a l  

components of forces and displacements can be found with the relations:  
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%r 

r 6h = v + - w  a 

r 
a 

6, - - - v - w  

The solution with s i x  constants of integration is  very general, 

and applies t o  both t h e  cases with and without a s ingular i ty  a t  the 

apex. 

Using the second of Eq. (13), we f ind 

E t e  ‘5 s i - - -  a2 x 

I 

FlGge mentions‘’) t h a t  C 

applied above a horizontal  section a t  which the forces a re  considered. 

Thus, 

held i n  ve r t i ca l  equi l ibr im.  

without s ingular i ty  and t h e i r  re la t ion to  our problem separately. 

i s  related t o  the total v e r t i c a l  force 5 

c5 is  dependent on the manner i n  which the spherical  s h e l l  is 

We s h a l l  discuss the cases w i t h  and 
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a) The Case w i t h  Singularity.  Suppose the cap i n  Fig. 4 i s  

5 
supported by a concentrated force P a t  the apex. Then apparently c 

i s  equal t o  a cer ta in  multiple of t h a t  force. 

p &  
c5 = - -  2x K 

I 
. A X I S  

V 

FIG. 3 - SHALLOW SPHERICAL CAP 

FIG. 4 



Since the cap is  under the cambined act ion of P a t  the apex and 

&v around the periphery, the corresponding deformation must be the 

change of height of the cap. If we choose the apex of the cap as 

reference point, i.e., = 0, then (Sv)edse = (6v)eUe (w)r=o 

represents the increase i n  height of the cap. 

t i on  Sh and change of slope offer no ambiguity. The conditions 

The horizontal  deforma- 

a t  r = x =e 0, w and $ m u s t  be f i n i t e  

a t  r = x = O ,  w = O  

a t  r = x = O ,  ( 1) and Ne must be f i n i t e  Nr 

result i n  C4 = C6 = 0, c3 = c5 0 

The remaining three constants C1 , C2 , C5 can be determined 

by defining three quant i t ies  a t  the edge: 

a t  x = x 0 (r = ro) , M r = M o ,  H = H o ,  Qv = Qo 

Then the deformstions of the edge can be expressed i n  the follow- 

forms. 
1 = 1 (C berlxo + C21bei1xo)Mo + -(C berlxo + Czbeilxo)Ho 

$0 L IJ E =  

+ (- 1 c berlx + c b i lxo  - - a l o  ke i lxo)  Bo L 13 0 e 23 K 

6ho = ! (51 [ x 0 ber x 0 - (1 + v )  bi lxo]  

I} Mo 

I}  Ho 

1 + 4 c [xo bei xo + (1 + V I  ber*xo 

[x bei xo + ( 1  + v >  berlxo + c21 0 

+ i ; { c 1 2 [ o  a x ber x 0 - (I+ v )  bei*xo] 

x bei xo + (1 + v )  ber*xo + c 2 2  0 

0 

[ 
+ { g c  a 13 [x o ber x - ( I +  v )  b i l x o ]  

a 23 

- -  e3r0 a K  [ x 0 ke i  x 0 + (1 + v )  kerlx 0 + ""I] X Qo 
0 
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0 0 
6v0 = ICll [- a2 2 xo (1 + v )  bei'x - ber x 

a 
2 

(1 + v )  bertxo - bei xo 

0 1 

0 1 

(1 + v )  bei'xo - ber x 

2 
+ c22 [ 7 ' "0 (1 + v )  Lr'xo 

+ ( '13 [- 3 "0 

+ C [eo 2 (1 + v )  ber'xo - bei xo 

* (1 + v )  bei'xo - ber x 

J 2X 

23 a 

- - e ro [+ 2X (1 + v )  (kertxo + 7) 1 - kei x 
2 

K 0 
0 

- - -  
0 

' ber'x 11' A K  where C 
( V I - a )  

0 (1-v> bei'x 
'12 a3x 2 2  [ber xo - X 0 

1 

0 - a Et(a + ro) 

0 
(1-v> bei'x 'ker'x {[ber xo*ker'xo - ber'x *ker x - '13 a 0 X 0 0 

0 

ber x - - 
0 0 0 X 

(1-v> b,ar'x *ker'x 
0 

K + 
0 
X 

= - -  
0 

bei'x c21 A K  

bei xo + (1-v> ber'xo] 
0 

2 2  
1 
a Et(a + ro) 

= - -  
'22 
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0 
C r= 2 1 [be, xo*kertxo - b e i t x  'ker x + y ('-') ber'x .kertx 

0 
0 

23 0 0 

and A = 

2 
(I-v) beitxo*keitxo 
0 0 

+ x  

-[hi xo + (1-v> h r t x o ]  [ber xo - (l-v) X beitxoj 
0 0 

-bertx 
0 

I bei ' x o  

From Eq. (VI-a), the following relationship can be developed. 

%o 

6h0 I 6v0 
or  i n  matrix notation: vo = foe So 

The 3x3 f l e x i b i l i t y  matrix fo defined by (14) theoretically 

should be symmetrical. 

discrepancies between terns on opposite sides of the  main diagonal. 

This is  due t o  the asymptotic nature of the solution and the use of 

1 and r/a fo r  cosine and sine of the extended angle go . 
of th i s  

results except f o r  a local "hump" near  the singular support. 

such loca l  phenmenon can be minimized if the s ize  of the cap is made 

very s m a l l .  In certain cases, such as the examples using approximate 

jo in t  loads (see examples i n  Section I V ) ,  a 3x3 f l e x i b i l i t y  matrix l ike  

An ac tua l  example showed that there a re  slight 

The use 

f matrix i n  an actual  problem i n  genersl yielded sat isfactory 

However, 

t h i s  one is essent ia l  f o r  obtaining the correct answer. 

.. 
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Qv b) The Case Without Singularity. When the v e r t i c a l  force 

i s  balanced by some dis t r ibuted pressure instead of a s ingle  force P 

a t  apex, different  constants of integrat ion are required t o  achieve a 

solution. For f i n i t e  deformations and f i n i t e  membrane forces a t  the 

apex, C and C4 m u s t  vanish. If we again consider the apex as the 

ver t ica l  reference point, i .e ,  w =: 0 a t  r =: x = 0, then C6 = -C1 . 
The remaining three constants 

3 

C1 , C2 , C5 a r e  eliminated by defining 

Mo , Ho , Qo a t  x = x as before. On t h i s  
0 

three quanti t i e s  

the expressions for edge deformations become: 

3c0 = - -  rx e [(ber 'x 0 )2 + (bei1xo)2] 

[bei xo* bei 'x + 
0 

ber x ber'x 
0 0 

0 
a3 x 

2 2  M -  
AEtkYa + ro) 

0 

' Ho 

basis, 

[ber xo* ber'x + bei  Xo. bei 'x  j Qo 
0 0 

0 )  O M 0  

'1 ( x: [(ber xo) 2 + (be i  xo) 

I 
2 j ] *  Ho + ( l - V )  [(berlxo) 2 + (bei lxo)  

' xo [ ber x Ober'x + bei x Sbei'x 6ho = - a* 0 0 0 

- 1 a' 
2 2  , p E t ( a  + ro) 

+ 2 xo [bei xo* ber'x - ber x bei 'x 
0 0 0 

'I a 3 
+ 

I- 1 
+ 2 bei x *ber 'xo - ber x bei'xo l o  0 

+ 0 [(berlxo) 2 + (bei'xo) 
X 
0 

34 
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+ 1) ber'x } *Mo [be= x *bertxo+ bet x .be i 'x  - (7 
0 

- 
' a  0 0 

"0 - dc 

If we form a 3x3 f l e x i b i l i t y  matrix fo f r o m  (VI-b) so as to satisfy 

(14), we f i n d  that the third column and the t h i r d  row a r e  not symmetrical 

with respect t o  the main diagonal. 

s a t i s f i e d  because the p a r t  of the work done by the d is t r ibu ted  pressure i n  

v e r t i c a l  direct ion is not included by considering only the quant i t ies  

appearing i n  Eq. (VI-b). 

In this case Betti's law is  not 

Such a f l e x i b i l i t y  matrix cannot be used. 

However, the relationships expressed by (VI-b)  a r e  valid, and the 

first 2x2 matrix obtained from (VI-b) i s  the same as t h a t  obtained from 
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( V I - a ) .  

horizontal and ro ta t iona l  senses are independent of the manner i n  which 

the cap is  supported ver t ical ly .  In  our solution process using t h e  

exact jo in t  loads (see Sections III,C,2 and IV,A), we s h a l l  make use of 

such a 2x2 f l e x i b i l i t y  matrix along with the  f irst  two coeff ic ients  

of the last equation of (VI-b). 

This means tha t  the  force-defomation relationships i n  the 



C. Jo in t  Loads 

In the  finite element analysis, only the forces and displacements of 

cer t s in  discrete  points of the structure a r e  considered. These points a r e  

cal led t h e  nodal points of the s t ructure  which are -the junctions of the 

individualelements. For axisymmetric she l l s  of revolution, these nodal 

points are circles .  If' the s t ructure  i s  subjected to concentrated forces 

applied a t  the nodal points, the resul ts  of the analysis w i l l  be exact if 

the geometry of the element is  exact. If dis t r ibuted load exists,  we can 

e i the r  consider the dis t r ibuted load as concentrated a t  several  nodal 

points, thus obtaining an approximate solution, - or we can hold the nodal 

points f ixed  i n  space and determine t f E  fixed-edge forces of each element. 

The reactions of these fixed-edge forces can be applied a t  the nodal 

points as concentrated jo in t  loads. The element forces and deformations 

due t o  these concentrated j o i n t  loads superimposed on the fixed-edge 

forces and deformations yield the finalanswers.  Next, w e  shall discuss 

the two a l te rna t ive  procedures i n  more details .  
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1. Approximate J o i n t  Loads.  

3 

FIG. 5 
Fig. 5 shows the developed surfaces of conical elements (a) and ( b )  

with joints  1, 2, and 3; C and C2 a r e  t h e i r  respective centrolds. 

The approximate load on j o i n t  2 i s  due t o  the components of the t o t a l  

pressure on the shaded area. 

j o i n t  loads due t o  in te rna l  pressure 

1 

Thus, we developed an expression for the 

p, . 
T2 = 0 

r + rb r + r  
2, a s i n  a, + ( ) b s i n  ab] pr 

2r2 

‘Os ab] Pr 
r2 + rb 

2r2 

where 

applied a t  j o i n t  2, a and b a re  the meridianal lengths of the 

elements (a) and (b),  

T2 , Ph2 , Pv2 a r e  the moment, horizontal  and v e r t i c a l  forces 

r r a re  the horizontal  radii of the centroid3.1 a ’  b 
c i r c l e  of e lemnts  (a) and (b) 

r - horizontal radius of j o i n t  2 2 -  
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aa , % are  the inclinations of elements (a )  and (b) 

as  defined i n  Fig. 1. 

The loads contributed by pressure on the sphericai cap a re  assumed 

ent i re ly  concentrated on the bottom edge of the cap. 

Such approximations yield only ver t ica l  and horizontal forces and 

no moment f o r  the jo in t  loads. 

concentrated forces induce high negative moments a t  intermediate joints,  

even far from end restraints ,  where the action i s  known t o  be predominantly 

membrane. 

Actual calculations showed that the 

As the sizes of the elements are made smaller, these negative jo in t  

moments decrease as expected. But i n  order t o  reduce these moments 

t o  the magnitudes of what they should be i n  a nearly membrane s t a t e  of 

stress, we m u s t  divide the ac tua l  she l l  in to  a very large number of 

e lements . 
A solution using these approximate jo in t  loads, which are  considered 

as equivalent system t o  the ac tua l  loading, is  quite sat isfactory f o r  the 

solution of problems. 

f l e x i b i l i t y  f o r  t h e  spherical  cap (as discussed i n  

Otherwise, the resul ts  would show zero ve r t i ca l  element force i n  the  cap 

which is not correct. 

In  t h i s  solution, it i s  necessary t o  use a 3x3 

111, B, 3-a). 
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2. J o i n t  Loads from Fixed-Edge Forces of t h e  Element. A solution 

(Fig. 6 )  using t h i s  type of j o i n t  loads consis ts  of t h e  following s teps :  

(1) Fix a l l  j o in t s  i n  space and compute t h e  fixed-edge 

forces  i n  a l l  elements. 

(2 )  Reverse these fixed-edge forces, apply them on t h e  joints ,  
and l e t  the s t ruc ture  deform. Compute j o i n t  displacements. 

Then determine t h e  forces and deformations i n  the elements. 

(3) The f i n a l  s t a t e s  of forces and deformations i n  t h e  

elements are obtained by adding (1) t o  (2). 

F I N D  FEF I N  JOINT LOAD AS ( 1 ) + ( 2 )  G I V E  

E LE M ENTS. REVERSED F E F  F I N A L  F O R C E S  
AND DEFORMATIONS 

F I N D  J O I N T  D I S -  IN ELEMENTS.  
PLACEMENTS, 
ELEMENT FORCES, 

AND DEFORMATIONS.  
( 3 )  

FIG. 6 
For the  case of ordinary structural-  frames the  solution i s  exact. For 

t h e  case of a shell ,  t h i s  solution, although exact i n  concept, does not  

yield more accurate results than tha t  found using approximste j o i n t  

loads. Moreover, t h i s  procedure involves more s teps  than the  solution 

using approximate j o i n t  loads. 

par t icu lar ly  advantageous. 

Therefore, it w a s  not found t o  be 

This w i l l  be discussed la te r  i n  Section V. 

The calculation of the fixed-edge forces i n  the spher ica l  and 

ccnical elements needs some fur ther  comments. 
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a)  Spherical Cap. Membrane solution of shallow spherical  

s h e l l  gives 

( 1-v 1 - r  3Cmo = X P r  o 

0 . a  
"mo = 2 E t  'r o 

0 . r  2 
"mo = 2 ~t Pr  o 

Eq. (l6) gives the membrane deformations which have 

been defined i n  Mg. 3. (Subscript m indicates membrane action). 

The application of a s e t  of edge forces { sF0] w i l l  produce edge 

def omations 

deformations. Thus, 

which when added t o  ( vm} r e s u l t  i n  zero 
b o )  

v + v  t o  
mO FO 

Since v = fo  SF 
FO 0 

fo SF = -v m 
0 0 

For the case without s ingular i ty  a t  apex, we use a 2x2 

( r e fe r  t o  111, B, 3) .  Hence 

fo matrix 

The th i rd  component of the element forces can be found separately: 



Fig. 7 shows the relat ions between the fixed edge forces of the cap 

and the joint  forces, from which it i s  apparent t h a t  

0 

Ph = -5 
'v = %F 

o r  
-1 

(4 = [ O 
0 

0 

-1 
0 

JOINT 

FIG. 7 
The 3x3 matrix i n  (19) i s  the equilibrium matrix of the spherical  cap 

A. (see 111, D, 1) w i t h  a minus sign, Hence 

o 'F R = -A 
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b) Conical R i q .  

Fig. 8 shows a conical r ing 
a' I d '  

b I C 

FIG. 8 

under in te rna l  pressure p . 
To f ind  the membrane displace- 

r 

ments, we need some arb i t ra ry  

support t o  balance t'ne pressure 

ver t ical ly .  For this  purpose 

we choose to  hold the cone a t  

tzpper edge such tha t  the 

meridianal displacement v of 

the top edge is  zero. This, we recal l ,  is the same boundary condition 

as used i n  determining the meridiaml stretch i n  the f l e x i b i l i t y  matrix 

(see 111, B, 1). 

Under t h i s  assumption the displaced cone w i l l  be i n  the dotted 

posit ion alb 'c ld ' .  (Note that angle changes a r e  not shown i n  Fig. 8.) 

A r i g i d  body displacement w i l l  bring the cone t o  t h e  dashed posit ion 

a b c d where the top edge of the cone is  a t  the or ig ina l  level. W e  

see t h a t  such a movement does not change the  magnitudes of the horizontal  

displacanents Bmi and 6 and the meridianal s t re tch  em . Thus the 

s t i f fnes s  matrix obtained i n  111, B, 1 can be used d i rec t ly  t o  f i n d  the 
mJ 

fixed-edge forces. 

Membrane solution of conical shel ls  gives : 

2 
S 

2 prcot a - -  - - 
2 E t  x m i  

p-cot%! 



- - --- prcos2 a [(2-v)si 2 + v SJ'] 
'mi - 2 E t  s i n  a 

2 
2 - prcos a 

'mj 
- - ' S  

j E t  s i n  a 

2 - s 2 ) - 2 s 2 log $1 
i i j 

p, co t  a 
e =  

4 E t  m 

By the  same reasoning as followed i n  (a) 

-1 S, = -f v = -k vm m I' 

where v x m and SF = 

A l s  0 

R = - A S F  x A k v m  

o r  for  the nth element i n  general 

where An 

j o i n t  forces of the  nth element (see 111, D, 1). 

is  the equilibrium matrix relating the  edge forces t o  the  
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c )  Cylindrical Ring.  Equations (22) and (23) st i l l  hold 

except the s t i f f n e m  and equilibrium matrices used cholild be those of 

the cyl indrical  element. The m e m b r a n e  defonnations 

case are 

P O  
iia 2 - 'r a bmi = - -  Et 

2 
- pr a - -  
'mj - E t  

Wth  the j o i n t  loads determined i n  the above described manner, 

a standard matrix solut ion w i l l  f i e ld  

;Jhich represent only the effect  of the system of j o i n t  loads resu l t in& 

f rcn  the unbalanced fixed-edge forces. t h  The final edge forces i n  the n 

element are 
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D. Matrix Solution of the Problem 

1. The Standard Matrix Operations. It was mentioned a t  the begin- 

ning o f t h i s  section t h a t  four kinds of matrices are  needed t o  solve a 

problem of axbymmetrical she l l s  of revolution. We have already discussed 

the formulation and application of the s t i f f n e s s  and load matrices, Now 

we shal l  show the formulation of the displacement transformation and 

equilibrium matrices. 

Fig. 9,shows the Fositive directions of the loads and displacements 

of the nodal points or jo in ts  of the structure which are  adopted i n  t h i s  

report .  
P v l  I 
t I 

Jo in t  displacements: 

8 - i n  direct ion of T, 
posit ive when f l a t t e n s  
the element. 

'h ' % - i n  direction of 
posit ive outward. 

'V' 
A - i n  direction of 

V posit ive upward. 4 /@ 

ELEMENTS =@,(&@, ... @ 
JOINTS f I ,  2 ,  3 ,  ... n+l  

FIG. 9 - JOINT FORCES 
AND DISPLACEMENTS.  
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I Remembering the definitions of the element forces and defornations (Figs. 

1 and 2) we obtain the following relations: 

7L = 01 

6ho = 

6v0 = -A vl 

e (n) = - cos a . % + sin an A~ + cos an %n+l - sin an - I n 
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In matrix form: 

or 

- 
1 

0 

0 

-1 

0 

- 

0 0  

1 0  

0 -1 

0 0 0  

0 0 1  

-1 0 0 0 0 

0 0 0 1 0 

-cosdn sindn 0 cosdn -sin& n - 

1 

Using symbolic notations : 

v = B r  

% 
4-d 
AVl 

Q2 
412 

Av2 

'n 
%n 

%+l 

%n+1 
AVn+l 

A vn 

1 

2 

r 

r 

r3 

n+l r 

where v is the matrix representing edge deformations of all elements 

r is the matrix representing the displacements of all joints 

and B is the displacement transformation matrix. 
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Next, considering the equilibrium of' each jo in t ,  w i t h  proper atten- 

t i o n  t o  the posit ive directions of the jo in t  forces and element forces as  

defined i n  Fig. 1,2, and 9 ,  we have 

(1) I T1 = Mo - Mi 

- 
Note: f o r  cyl indrical  element, 01 = 90' s i n  01 = 1, cos 01 = 0, r = 1, 

the above re la t ions  s t i l l  hold. 
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From these relat ions we can form 

t 

I 

R1 

R2 

3 R 

. 

. 

Rn+l 

\ 

o r  using symbolic notations: 

R = A S  

where R is t he  matrix representing forces on all j o in t s  

S i s  the matrix representing edge forces of all elements 

and A is the equilibrium matrix. 

With v and S as defined i n  Eqs. (26)  and (27) ,  we can write 

S = k v  (28) 

where 

il 0 . 



(0) -1 k(’) = f l  -1 k (4 = fn -1 . and k = fo  Y ................ 
is  the f l e x i b i l i t y  matrix of the cap 

f O  

fl  ........ fn s t  th are  the f l ex ib i l i t y  matrices of the 1 ........ n 

cone o r  cylinder. 

Eqs- (271, (281, (26) yield 

R = A k B r  h K r  

K = A k B  

which relates direct ly  t h e  Joint  displacements 

R of the structure. The quantity K is called the s t i f fness  of the 

structure. 

r t o  the jo in t  force 

With a given set of j o in t  loads R we can f ind  i n  sequence: 

r from (@), v f r o m  (26) and S frm (28). 

!his process of solution, hawever, involves the operations with 

large matrices, such as A, B, k, consisting mostly of zeros and 

therefore, poses a problem of storage for  the computer. Indeed, 

IR4 7090 can handle problems u s i n g  only about 15 elements when t h i s  

process i s  employed. 

One way to avoid such a storage problem is t o  form the s t ruc tura l  

s t i f fness  K direct ly  by operating w i t h  s m a l l  matrices An , Bn and 

,(n) instead of the u r g e  matrices A, B, and k 

i 
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2. The Direct S t i f fness  Method. To avoid the  d i f f i cu l ty  of 

having inadequate storage locations i n  the computer, we operate w i t h  

the  small sulmatrices An , Bn of the large matrices A and B 

appearing i n  Eqs. (27) and (26) together w i t h  the  element s t i f fness  

k(n) and form the  s t ruc tu ra l  s t i f fness  K i n  a d i f f e ren t  way. 

I n  the previous a r t i c l e  we have established f o r  the f irst  conical 

element the following relat ions : 

l. 

Ti 

'hi 

'vi 

j 
T 

h j  
P 

'vj 

a r e  t h e  j o in t  forces and j o i n t  displacements of the  s t ructure  consisting 

of on* one element, i.e., element (1). 

"S, the  s t i f fnes s  of the s t ruc ture  consisting of only element (1) 

is 

and s imilar ly  f o r  the nth 

of the  nth cone (or  cylinder), only 

structure,  that  is, the  s t ructure  consistink3 



For the spherical  cap 

and 

e 

where = Rj (0) , rE (0) = rj  ('I, since the cap has only a lower 

edge. 

By parti t ioning of matrices, Eq. (31) can be rewritten as 

where 4 n )  kii P 

P 33 

ii fi 

and Ani  9 Anj Y Bd > Bd a re  sulmatrices of An and Bn such that 

Next, we note tha t  the jo in t  force a t  any jo in t  i n  the assemblage 

is  the sum of the forces on joints  i and j of the lower and upper 

elements respectively, and the jo in t  displacement of any j o in t  i n  the 

assemblage is common f o r  jo in ts  i and j of the lower and upper elements. 
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U s i n g  Equations ( 3 2 )  and ( 3 3 ) ,  

I ., 
1 r 

'2 

r3 
< 

n+l r 
L 

the s t ruc tura l  s t i f fness  of the 

> 

assemblage may now be put in to  a tri-diagonal matrix form 

R1 

R2 

3 R 

R n + ~  

. . 

. 

. . 

. 

. 
-(n-l) -(n) 

( k j j  +kii 

which is an expanded form of the  re la t ion 

R =: K - r  

and it should be noted t h a t  K as developed i n  Eq. ( 2 9 )  a lso  can be 

stated i n  t h i s  form. 
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The process described i n  t h i s  a r t i c l e  has the  advantage t h a t  
- - - - 

k f o r  each element a re  developed i n  a do-loop of 
kii  9 kij 9 kJi Y jj 

the computer program, elirniaating t h e  storage of the large matrrices 

A, B, and k. The final K matrix is the only large matrix which 

remains f o r  subsequent calculations. If t h i s  K matrix is  stored 

i n  a conventional rectangular form, the 7090 camputer can handle problems 

involving 45 conical elements. 

storage and solution o r  by applying a recursion process (21) problems 

By the use of subroutines of skew 
* 

involving several  hundred o r  more elements can be analyzed. 

* 
Private communication from Messrs. A. De Fries and Ashvin Shah, 

Graduate students of University of California, Berkeley. 



3. Special Methods f o r  Shells Subject t o  Internal  Pressure. 

For s h e l l s  subject t0 in te rna l  pressure only i n  which the stress 

conditions are essent ia l ly  membrane except i n  regions near the  res t ra ints ,  

some short-cut procedures can be used instead of the more general 

approaches discussed above. Two such methods are described below. 

a) 

the structure. 

Substi tution of a known element force i n  place of a p a r t  of 

FIG. I O  

Fig. lO(a) shows a spherical  s h e l l  under i n t e r n a l  pressure It 

i s  known t h a t  t he  portion above j q i n t  a is  essent ia l ly  i n  membrane 

a t  a can be readi ly  s t a t e  of s t r e s s  and the membrane force 

determined. We can, therefore, consider the portion of the s h e l l  

below a , apply N$ as an addi t ional  j o i n t  load a t  a (Fig. 10-b) 

and thus, reduce the number of elementary cones which need t o  be 

considered. This procedure simplifies the solution. 

pr . 

Nld 
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b) Membrane solution plus edge-displacement effect ,  Fig. =(a) 

shows t h e  spherical  s h e l l  subject t o  internal  pressure p . r 

( b )  

FIG. I I  

( C )  

W e  f irst  remove the end constraints and l e t  it deform e n t i r e l y  as 

The s h e l l  w i l l  take the configuration shown by dashed l i n e  a membrane. 

(2) 

forces can be e a s i l y  obtained from the  membrane solution. 

impose the known displacements a t  the boundary t o  bring the edge back 

t o  i t s  or ig ina l  location and slope. 

cross shears are induced i n  the shell ,  and the f ina l  configuration of the 

s h e l l  is  shown by the dotted l i n e  (3)  in Fig. l l -c .  

procedure, f ini te  element analysis i s  used only i n  the last s tep  of 

analysis i n  which only displacements a t  the boundary a r e  applied. 

the problem of l o c a l  moments or  uneven meridianal forces around j o i n t s  

does not arise. 

(Figs.l l-b and 11-e)* This deformed shape and the  induced i n t e r n a l  

Then we 

A t  t h i s  stage bending moments and 

I n  applying t h i s  

Here 

It should be remembered tha t  the membrane solution i s  a convenient 

approximation. 

governing d i f f e r e n t i a l  equation of the shel l .  

e r ror  introduced i n  such an approximation i s  found to be negligible. 

It represents a simplified par t icu lar  solution of the 

But f o r  most cases, the 
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IV. APPLICATIONS OF FINITE E L E "  SOLUTION 

A. Examples 1-10 

A large number of examples had been worked out i n  order t o  t e s t  the 

correctness of the formulations presented i n  the  previous sections and t o  

explore the advantages or  disadvantages of each par t icular  sequence of oper- 

a t ions.  A number of these examples w i l l  be presented i n  t h i s  chapter t o  

i l l u s t r a t e  applications of the method and t o  i l l u s t r a t e  some of the d i f f i -  

cu l t ies  encountered i n  solving problems. 

For convenience of comparison, most of the examples involve the 

analysis of the same she l l  by d i f fe ren t  procedures. Thus, methods of using 

different jo in t  loads, d i f fe ren t  number of elements, different  s t i f fnes s  

of spherical cap, and special  short-cut procedures are i l l u s t r a t ed .  Only 

one example i s  solved fo r  a cyl indrical  pipe t o  i l l u s t r a t e  the application 

of cylindrical  elements. 

The she l l  analyzed i n  nost of the examples i s  a spherical  one of 

constant thickness fixed a t  the bottom with a cent ra l  semi-angle of 7 5 O ,  a 

radius of 100 in .  and thickness of 1/2 i n .  , subject t o  an in te rna l  pressure 

of 100 p s i .  7 The assumed material properties are E = 10 p s i  and J = 0.2. 

Hetknyi's solution of a spherical  she l l  ( 2 2 )  which i s  believed t o  be 

suff ic ient ly  accurate f o r  a l l  p rac t ica l  purposes i s  used as a basis of com- 

p r i s o n .  Rajan also formulated a solution f o r  spherical  she l l s  

closed mathematical form; the c r i t i c a l  values of meridianal mments obtained 

(23) in 

by using t h i s  method are  a l s o  l i s t e d  f o r  cmparison. 

Several steps are involved i n  solving the problem. F i r s t ,  decision 

must be made regarding the number of elements t o  be used t o  approximate the 
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actual  s h e l l  and There the jo in ts  should be located. When the locations of 

the j o i n t s  a re  selected, the geometry o f t h e  conical elements can be com- 

puted and f r m  t h i s  the appropriate Thompson functions are  obtained using 

cer ta in  parameters. 

then developed using these Thompson f h c t i o n s .  

have been writ ten f o r  these purposes including the calculations of approxi- 

mate j o i n t  loads. When the s t i f fnesses  of  the  elements are  available,  one 

single large program takes care of a l l  the remaining steps of the solution 

including the development of jo in t  loads from fixed-edge forces i f  necessary. 

All cmputations are  carried out by IBI 7090 computer, under the UCB 

Computer Center job number 255. 

The f l e x i b i l i t i e s  and/or s t i f f n e s s  of the elements are  

Separate computer programs 

The cr i te r ion  for judging the accuracy of a solution i s  a comparison 

with other known solutions of the dis t r ibut ion of the meridianal moments 

i n  general and especially of t h e i r  c r i t i c a l  values at  the fixed edge. 

a few cases the meridianal tension i s  also shown. 

In  

Ex. 1 

E 
2 '  I 

F16. 12 - 25 CONE ARRANGEMENT 
OF 75" SPHERE. 

The 75' sphere w a s  analyzed as 

an assemblage of a 5 spherical 

cap and 25 cones a s  shovn i n  
Fig. 12. Approximate jo in t  loads 

were used. 

0 

MS , The meridianal manents 

membrane force N 

and the displacements Ah and 
A 

below. 

a t  each j o i n t  
S 

of each jo in t  a re  tabulated v 

In  the tab le ,  N below jo in t  indi- 
S 

cates  the N.  force i n  the element 

below the jo in t ,  N above jo in t  

indicates the N .  force i n  the 
J 

element above the j o i n t .  

1 

S 

- 
For each element Ni = r - N . 

j 
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@ 

j o  

3 

11 

14 

17 

20 

23 

26 

29 

32 

35 

38 

41 

Ms 

-608 

-155 

- 85 

- 97 

-110 

-114 

-114 

-114 

-114 

-114 

-115  

-11.5 

-111 

-. 
S 

Lbove 

~862  

d75 

+887 

1.905 

$933 

4941 

4948 

4955 
-- 

4981 

4984 

4987 

4990 

4993 

Below 

5133 

5117 

5111 

5120 

5109 

5096 

5084 

5061 

5054 

5052 

5045 

5042 

N N 

lbove Below 
S 

M - 
-113 

'oint 
- 
1 

Joint - 
14 

Av - 
0931 

A 
h 

0557 

05 88 

- 

0624 

0659 

,0671 

,0683 

0706 

... .- 

____ 

0752 

15 -111 2 5027 099 0 

I 0882 5 724 16 3 

4 

- 
$396 

4595 

465 5 

4701 

-112 

-134 

- 112 

,0829 5551 ,0191 17 

,0812 18 ,0230 5446 

5370 

5 316 

5 

.0802 6 
- 

7 
- 

8 

19 -107 ,0272 

,0312 .0785 20 -103 

4738 5272 - 104 

-127 

- 165 

- 161 

k I 

21 

22 

- 0351 

.0388 4767 5238 .0761 9 
- 
10 0687 

0 0495 

-- 
4792 .Oh25 

.0460 

5208 

5185 

23 

24 4813 11 

12 
- 

13 

25 .068: 

.065! 

5168 

5149 

4832 

4848 

* 0197 

0 ,0526 26 

NOTE: A l l  quant i t ies  a r e  i n  inch and pound units. 
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Ex. 2 The same assemblage as i n  Ex, 1 was analyzed with jo in t  loads - 

2 

3 

4 

5 

6 

derived frm the fixed-edge forces of the elementso A 2 x 2 stiff- 

ness w a s  used f o r  the cap. m e  resul ts  are tabulated below. 

- 36 6147 

68 5780 

81 5589 

85 5470 

91  5389 

d-E Abovc 

16 

17 

18 

ig 

20 

1ll 5114 

113 5102 

116 5092 

u g  5082 

110 5072 7 

8 

9 

BelaJ - 
3849 

4216 

97 5330 

101 5285 

103 5250 

4408 

4526 

4607 

4666 

4711 

4747 

i o  I 105 

4776 

4800 

4821 

4839 

4855 

5220 

4 - 
.0132 

0148 

23 

24 

24 

26 

0165 

- 60 5034 

- 64 5031 

112 5027 

642 5024 

.0232 

.0272 

4952 

4974 

0311 

>0487 a0217 

.0195 .OOgO 
- 

0 0 

-0349 

e 0386 

.0421 

0456 

,0489 

.0522 

> 08ge 

,0841 

> 0 8 u  

,080€! 

- 

0793 

,0775 

,0755 

0733 
- 
3 0709 

,0684 

10657 
I I 

4882 .0581 .0599 I I  
4894 .o608 -0567 I 1  
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EX. 3 The same assemblage as i n  Ex. 1 was permitted t o  def lect  as a mem- 

brane, then the edge w a s  forced back t o  i t s  or ig ina l  posi t ion and 

incl inat ion.  

.0556 .0630 

Jo in t  Jo in t  M I s  I N N 

Above 
-1.1 

-1.0 

- -9 

-- 

-.__ 

L t I k z  Above Below 4, Av 

.0070 .0841 

.0112 .0846 

.0153 .0840 

.0194 ,0831 

.0234 ,0819 

.0274 .0806 

.0313 .0791 

Below 
-1.1 1 -7.2 -53 -0  

-3.5 -33.2 -22.8 

-0.9 -16.6 -12.7 
_ _  

-0.1 -10.0 - 8.1 

-.05 - 6.7 ' -  5.6 
... .. . - - ~  

- _  - 

-.07 - 4.8 - 4.1 

-.08 - 3.6 - 3.3 

-.06 - 2.9 - 2.5 

15 1-a - -9 

- .8 

2 

3 

4 

5 

~- 

. - 
- - 8  - -8  17 -.02 

18 i 1 . 6  

19 4 . 8  

20 +3.3 

21 -22.8 

- - -  I. - .-I_ 

_- __  

22 -64.2 

23 -112.1 

24 -112.: 

25 6 3 . 9  

- .a - -7 
6 - - 7  

- -7 / 

7 

8 

- .b 

- - 6  - - 6  

9 -.05 I - 2.31 - 2.1 
/ - -6  - .b  

10 -.04 I - 1.91- 1.7 - .6 - - 6  

11 - -6  
I - .6 

12 -.02 I - 1.41- 1.3 - .6 I -  .6 

-.01 I - 1.21- 1 .2  26 1 +595.1 - .6 L O 1 0  13 

Note : 1. Add 500 #/in ( the  constant membrane force)  t o  the  r e s u l t s  of 
bending analysis t o  obtain the t o t a l  N i n  the  she l l .  

The displacement values l i s t e d  a re  t o t a l  displacements caused by 
the  membrane and bending displacements. 

S 

2. 

It i s  s ignif icant  t o  l i s t  f o r  the  purposes of comparison the  Ms 
values for the  same s h e l l  based on Hetknyi's and Rajan's solutions.  

accuracy of these solutions i s  known t o  be very good. 

The 
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Hetenyi' s Solution 

fi 

I 

S 
M S I @  M I @ 

S --.- 
M S ' @  

26 
8 50 I 29 

-.ooo12 47 - . n o 1  67 -63.66 
-.00044 50 -.2491 69 -U2.1 

R a  jan' s Solution 

62 +2.82 
44 - .on8 65 -23.5 

if' "1-p" 

Ex. 4 

32 -.00051 ' 53 -.OO42 71 -111.7 
35 +.00132 56 +1.636 73 62 .44  
38 +.00706 59 +4.839 75 +589.2 

I 2 

FIG. 13 - IO  CONE 
ARRANGEMENT 

The 75' sphere as i n  Ex. 1 vas 

divided i n t o  10 cones and a 5' 
cap as sho-m i n  Fig. 13. m*e 
analysis was obtained by a super- 
posing edge displacements found 
frm the membrane solution t o  ob- 
t a i n  correct boundary conditions. 
The meridianal mments are l i s t e d  
below. 

J o i n t  k S 
M 

-12 
- 2  

- .7 
- .4 
- .2 

- - 3  

- Joint  

7 
8 

9 
10 
ll 

S 
M 

+ 1  
+ 6  
-23 

-325 
+594 
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Ex. 5 

5 

6 

7 

8 
-. 

The same 75' sphere as  i n  Ex. 1. I4 * 5000 

______ 
21 70 -175.0 -50.5 

- 

38 -52.0 13 54 

40 -53.3 14 56 -49.2 22 72 -101.9 

42 -52.7 15 58 -47.1 23 

44 -51.9 16 60 -45.4 24 75 +565.6 

74 +239.0 
_- - 

A 30' cap was removed and the 

remaining pcrtion divided i n t o  

23 conical r ings (Fig. 14). 

force a t  the edge of the  cap, 

known t o  be very close t o  membrane 

tension of pa F, i s  applied i n  

the direct ion of the tangent of 

the cap. The pressure over the 

The 

remaining portion of the sphere 

was approximated a t  the  jo in t s  

A MEMBRANE FORCE. as usual. The solution yields  

FIG. 14-23 CONE ARRANGEMENTS 
WITH CAP REPLACED BY 

the  following meridianal moments. 
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Ex. 6 

The 75' sphere of Ex. 1 ras di rided i n  three d fferent arrangements 

of cones, and analyzed v5th the  aFprox5zate jo in t  loads. 

arrangements are : 

The three cone 

(1) 5 O  cap and 25 cones with subtended angles ranging from top t o  

bottom of 20 of 3 O  and 5 of 2'. 

Examples 1, 2, and 3. 

This is  the  arrangement used i n  

(2) 5 O  cap and 35 cones with subtended angles of 5 of 1 0 , 5 of 2O, 

10 of 3O,  10 of 2O, and 5 of 1'. 

5' cap and 45 cones with subtended angles of 5 of lo, 25 of 2 O ,  and 

15 of 1'. 

(3) 

The resu l t ing  meridianal mments f o r  each case a re  p lo t ted  i n  Fig. 15. 
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Ex. 7 By the same three cone arrangements as in Ex. 6, the s h e l l  vas 

analyzed with F.E.F. joint forces. 

ents are plotted in Fig. 16. 

- 
The resulting meridianrzl mom- 

- 400 = 

FIG. 

STIFF.) 

6 Ms DISTRIBUTION FROM SOLUTIONS 
USING FEF JOINT LOADS. 

Ex. 8 Same three cone arrangements as in Exs. 6 and 7. 

edge-displacement effects on membrane solutions. 

Superposition of 

The resulting Ms 

are plotted in Fig. 17. 
MEMBRANE + END DISPL. 

IO ELEM.  4-10', 6-5' 

35 ELEM:  5-Io1 5-2*,  

3 S T I F F  1 

- 2 o o L  

FIG. 
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Ex. 9 The 75' sphere of Ex. 1 was analyzed with approximate jo in t  loads 

using three d i f fe ren t  cone arrangements which involve uniform 

elenent lengths and break angles e-erjr,;here i n  the shell, except 

i n  regions next t o  the cap. The three cases are:  

lo 
(1) 

(2) 

(3) 

5O cap and 45 cones: 

5' cap and 35 cones at  2' spacing 

5' cap and 24 cones: 

5 of 2O, 40 of 15 

1 of lo, 23 of 3' 

The meridianal moments are  plotted i n  Fig. 18. 

544.8 (+51.2 = 596.0) 

- 300j 1 1 1 I 
'3. 

I 
- I  

RESIDUAL MOMENT - SPACING OF JOINT 

Mopprox.  a 4 . 1 8 1 ~  

FIG. 18 M, DISTRIBUTION FROM SOLUTIONS USING 
EVEN SPACING OF JOINTS. 



A c i rcu lar  pipe 20" i n  diameter, 

35" long, and 3" thick i s  sub- 

jected t o  a moment of 1000 

lb-in/in and a horizontal  force 

of 1500 l b s  per i n .  a t  one end; 

the  other end i s  fixed. L e t  

E = 3 x 10 p s i ,  4 = 0. 6 

Ex. 10 
l O O O l a ~ .  

.' lbOO&. 
in. 

in. "T 3 aj 
.- 

This problem w a s  solved by a 
closed form mathematical pro- 

cedure using 35 cyl indrical  

elements of 1" length. The 

resu l t s  of both solutions are 

tabulated below. 

FIG. 19 

Pipe Solution by Mathematical Approach 

- 
Q 

- 302 
1_ 

M X I Q  w !  JT! 
3 3003 

-* I -.0002 ~ 

- .0001 
- . . . 

-261 
I 

~ 

- 219 - . 0001 
-178 4 (3405 

-140 

-107 6 13439 
Less 

- 78 - 49 
than - 53 8 12890 -*- - 33 

- 18 -.0006 34 t -.0005 35 - 5  

-.0003 36 1 4 
I 



Pipe Solution by Finite Element Approach 

I --1 I 
Q W 'oint 

25 
- Mx 1p Joint1 Mx 1- - 302 - ,0018 13 I1082 

-261 - .001g 26 

-218 - .0018 27 *-- -178 - -0017 28 

17 I 204 -140 - .mi6 

-167 -0063 

-282 -I- .0040 * -107 - 78 
- 

- .m12 31 

32 
- 

- 53 - .m10 

- 33 

- 17 
- 

- .0008 33 

34 - .0006 
- 5  - .om5 35 %-- 24 1-157 4 - -0003 36 

- 



B. Computer Programs 

For an e l a s t i c  analysis of she l l s  of revolution, the following 

individual programs (coded or iginal ly  i n  Fortran language) a re  now avail-  

able.  

1. 

2. 

3 .  

4. 

5. 

6. 

7.  
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Geometry and Thmpson functions f o r  conical elements. 

) may be very large,  ’ yJ The argument f o r  Thcanpson functions (yi 

and the Thompson functions w i l l  involve numbers much greater than 

or smaller than which a re  beyond the capacity of IBM 7090. 

Fortunately, the f l e x i b i l i t i e s  of a conical element always involve the 

product of a ber-series function and a ker-series function. This pro- 

gram yields Thanpson f’unctions i n  which a cer ta in  posit ive power i s  

taken off frm all the ber-series functions while an equal negative 

power i s  taken off frcm the ker-series functions. 

functions of f a l s e  parer w i l l  y ie ld  the correct f l e x i b i l i t y  matrix of 

a cone j u s t  as w e l l  as Thanpson functions of t rue  power. 

F lex ib i l i ty  and s t i f fness  of conical elements, good f o r  d.s 90’. 

Thompson functions f o r  individual numbers, good f o r  arguments up t o  

120, output i n  t rue  power. 

Flexibi l i ty  and s t i f f n e s s  of spherical  cap. 

a. with s ingular i ty  

b. without s ingular i ty  together with F .E .F. output 

F lex ib i l i ty  and s t i f f n e s s  of cyl indrical  element ( i n  subroutine form) 

Approximate j o i n t  loads 

Solution program using approximate jo in t  loads and 3 x 3 cap s t i f fness ,  

good for 45-element cone arrangement and f o r  zero or known end-joint 

displacements. For other boundary conditions, it i s  necessary t o  

regroup the  unknowns and change the arrangements of several matrices 

involved. 

These Thanpson 
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8.  Solution program using 2 x 2 cap s t i f fnes s  and F.E.F. j o in t  loads. 

The F.E.F. j o in t  loads are  developed within the program. The output 

gives  the final solution (sum of fixed cones solution and the  e f f ec t  
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V. CONCLUSIONS 

Examples 1 and 2 of the previous chapter showed t h a t  the solutions 

using approximate jo in t  loads and the F.E.F. jo in t  loads represent two 

opposite trends of slow convergence. The former (using approximate loads) 

j 
yields  negative mcwents i n  the i n t e r i o r  regions of the she l l ,  and N 

values i n  the conical elements smaller than the known membrane force, while 

the Ni values are  always greater than the N values. The l a t t e r  approach 

(using F.E.F. jo in t  loads) yields  posit ive mment a t  i n t e r i o r  jo in ts  and 

N values greater than the known membrane force, while the Ni values a re  

always smaller than the N values. It i s  believed tha t  the appearance 

of negative residual manents i n  the f irst  approach i s  a natural consequence 

of the application of concentrated forces, and tha t  the appearance of posi- 

t i v e  residual manent i n  the second approach i s  due t o  the f a c t  that  by the 

procedure used we have introduced sane large quant i t ies  (the F.E.M.) i n t o  

a region where these quantit ies do not e x i s t .  

around a jo in t  is  much smaller than the fixed-end mments and the dis t r ibuted 

j 

j 

j 

Since the unbalanced moment 

mments can never exceed the unbalanced mments i n  magnitude, posit ive 

moments remain at  the  jo in ts .  However, as the number of elements becanes 

very large and the element lengths becme small ,  these residual moments, 

positive or negative, do diminish. 

of analysis by both approaches converge. Examples 1, 2, 3 point out the 

f a c t  t h a t  the jo in t  displacements obtained by d i f fe ren t  procedures are  

about the same. 

Examples 6 and 7 showed t h a t  the results 

&ample 5 i l l u s t r a t e d  theuse of a short-cut method by which a 23-element 

solution yields  nearly as good results as a regular solution using 45 

elements (Ex. 6) .  
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Examples 6 and 7 showed t h a t  whenever jo in t  locds are applied some 

res idua lmments  always remain i n  regions where the stress condition i s  

known t o  be membrane. 

j o in t  loads are  used and negative when approximate jo in t  loads are  used. 

Their magnitudes depend on the  lengths of the elements and the break angle 

between t h e  elements. 

smaller, t h e  residual  moments diminish quickly (M gc d ). 

by averaging the  results of a solution using approximate j o i n t  loads and 

those of another solution using F.E.F. joint  loads, both based on the  same 

arrangement of elements, the correct r e su l t s  can be obtained. 

however, needs r a t iona l  jus t i f ica t ion .  

These residual  moments a re  posi t ive when F.E.F. 

When the  element lengths and break angles a re  made 

2 It appears t h a t  

Such a step,  

Examples 4 and 8 indicate the advantage of superposition of e Q e  dis- 

placement e f f ec t s  on a membrane solution. 

arrangement yields  nearly as good results as does a 25-element or a 

35-element arrangement. 

By t h i s  procedure a 10-element 

No problems of residual mments a r i s e .  

Example 9 showed t h a t  when constant element lengths and break angles 

d is t r ibu t ion  using var- are  used throughout (except near vertex), the  

ious element lengths a l l  take the same shape. 

d i f fe ren t  heights from a base l i n e  i n  a graph. 

from the  base l i n e  represent the residualmments  f o r  the  par t icu lar  

element lengths and break angles used i n  the  analysis.  

Ms 
Their p lo ts  appear only a t  

These d i f fe ren t  heights 

Cmparing Examples 

8 and 9,  we see tha t  t he  correct 

ply sh i f t i ng  the  base l i n e  down (for approximate jo in t  loads) and up ( f o r  

F.E.F. j o in t  loads) through an amount equal t o  the residual  mment and 

read the curve referred t o  the  new base l ine .  But i f  the  lengths of t he  

elements a re  kept the same while the  break angles are not (possible near 

boundaries), such an approach should not be taken because the non-uniformity 

Ms dist r ibut ion can be obtained by sim- 
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of break angles w i l l  cause loca l  change of the slope of the M curve and 

thus impair the correctness of the r e s u l t .  
S 

Example 10 simply showed the correctness and accuracy of using cylin- 

dr ica l  elements f o r  a solution. 

1. 

2. 

3. 

4. 

5.  

6 .  
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We thus cane t o  the following conclusions. 

Finite element analysis of 

give correct resu l t s ,  but due t o  the space nature of the problem, a 

much larger  number of elements than t h a t  needed f o r  a frame analysis 

i s  required f o r  the desired accuracy. 

axisymmetrical she l l s  of revolution does 

"he use of F.E.F. jo in t  loads, although exact i n  concept, offers  no 

pract ical  advantage over the use of approximate jo in t  loads. 

contrary it involves more steps f o r  a solution than does the use of 

approximate jo in t  loads. 

On the 

For possible cases, a solution by superposition of edge-displacement 

effects  and membrane e f fec ts  i s  always recommended. Such a solution 

can make use of a re la t ive ly  small number of elements and yet  yield 

accurate resu l t s .  For she l l s  with a rb i t ra ry  shape and thickness, a 

finite-element membrane solution i s  f a i r l y  simple t o  formulate. 

"he use of equal element lengths and equal break angles throughout 

the s h e l l  i s  recommended. I n  such cases a r e l a t i v e l y  s m a l l  number of 

elements could yield correct r e s u l t s  by the use of sh i f t ing  base l i n e  

approach discussed before. 

Short-cut methods of replacing a portion of the s h e l l  with known 

forces can be used t o  save e f f o r t  if possible. 

Joint displacements are  re la t ive ly  insensit ive t o  the solution method 

and the number of elements used. 
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